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Abstract
The ability of antibodies to bind to a wide variety of targets in a highly specific and
selective manner has led to an increasing interest in their use as therapeutics for a broad
range of diseases. However, computational methods have struggled to accurately predict
the impact of mutations in antibody-antigen complexes on binding affinity, which has
limited their effectiveness in antibody engineering and development. Nevertheless, recent
breakthroughs in protein language models and deep learning, along with increased
availability of training data, have enabled precise induction of several epitope-focused
immunogens, sparkling hope in the field of rational antibody design for the development
of vaccines and therapeutic antibodies. Here, we leverage protein language models,
interpretable deep learning models, and the growing repository of antibody structures
and binding data to identify and characterize structural and sequence motifs relevant to
various antibody properties. This approach can guide the efficient design of antibodies
tailored to specific needs. We demonstrate our method in the context of SARS-CoV-2
binding, broadly neutralizing antibodies against HIV strains, and anti-citrullinated protein
antibodies (ACPAs) in rheumatoid arthritis.
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1 Introduction

Antibodies (Ab) are central components of our immune system that provide protection against foreign
pathogens by recognizing their target antigen (Ag) with exquisite specificity and remarkable affinity [1].
Through V(D)J recombination and somatic hypermutation in the bone marrow and lymphatic tissues [2],
they have the capacity for binding an extraordinary variety of epitopes as a result of their sequence
diversity, which is estimated at 1013 unique molecules in the human antibody repertoire [3]. This ability
to bind to a wide variety of targets in a highly specific and selective manner has led to an increasing
interest in their use as therapeutics for a broad range of diseases including several types of cancer [4]
and rheumatoid arthritis [5]. Thanks to the significant improvement in antibody engineering over the
past decade, targeted neutralizing antibodies now account for over half of the therapeutic market [6].

Considering the huge diversity of antibodies, in which each small variation potentially affects multiple
biological properties, the computational design of immunogens that elicit precise and focused antibody
responses remains a major challenge. Nevertheless, recent approaches, leveraging the Rosetta energy
function [7, 8, 9], geometric deep learning [10] or protein language models [11], has enabled the
precise induction of several epitope-focused immunogens, sparkling hope in the field of rational antibody
design for the development of vaccines and therapeutic antibodies.
Protein language models. In recent years, self-supervised protein language models (PLMs) have

emerged as a powerful paradigm for a large number of protein-related tasks, including biological
and molecular property prediction [12]. At their core, these models treat amino acid sequences as a
biological language. This language can be decoded using deep learning models trained on vast numbers
of protein sequences (approximately 250 million), enabling the translation of specific sequences into
meaningful vector representations of proteins (embeddings) in a high-dimensional latent space. Some of
the best-known PLMs include protBERT (Bidirectional Encoder Representations from Transformers) [13],
ESM (Evolutionary Scale Modeling) [14], aminoBERT [15] and ProGen [16]. Although neither of them
was specifically trained for molecular property or structure prediction, their immense scale (15 billion
parameters for the largest) allows them to distill fundamental qualities of the biological language. This
is demonstrated by their ability to predict protein 3D-structures [17, 18], binding events [19, 20], and
identifying functional sites [21]. Importantly, the latent space representations learned by these models
can serve as inputs for subsequent predictive models, which helps reduce training time and model
complexity while enhancing performance on downstream tasks [22]. Additionally, this learned latent
space is significant for generative AI, where de-novo protein sequences with desired binding properties
can be directly generated without iterative optimization processes [23, 24], a method that has also
been specifically applied to antibodies [25, 26].

We note that, given the success of these PLMs in many bioinformatics-related tasks, similar models have
been trained directly on antibodies (AbLang [27], Antibert [28], AbMAP [29]). The rationale behind
these models is that they might improve representation capabilities for immune-related applications [30].
Still, both general and antibody specific PLMs encode different type of information and they may both
be relevant for any particular downstream task [22].
Interpretability. Many machine learning models, especially PLMs, are inherently non-interpretable

due to the encoding of amino acid information in highly abstract and complex latent spaces. However,
valuable insights can still be obtained by examining the model’s layers and utilizing attention mecha-
nisms [31]. For antibodies, attention mechanisms and interpretability can assist in assessing the impact
of mutations, even when the antigen is unknown. As mutating an amino acid predicted to be crucial for
the function or structure of an antibody is likely to have a more significant effect on antigen binding
than mutating less critical residues, interpretability can directly aid in rational antibody design. This
has been shown through protein language models utilizing evolutionary scores for residues [11] and
attention scores that identify important amino acids for the antibody’s structure [32].

Additionally, interpretability methods applied to deep learning models trained explicitly on antigen-
antibody complexes [33, 34] can yield more antigen-specific insights. These techniques can uncover the
specific motifs and structural elements that contribute to the binding, providing valuable information
for understanding and improving antibody design targeted to specific antigens.
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Proposed work. PLMs have already proven to be highly useful for immunology-related tasks such as
antigen binding [30, 22, 35, 36]. However, the rationale behind their decisions in the context of antigen
binding remains mostly unexplored. Here, we leverage attention mechanisms [37] to interpret the
amino acid pairs responsible for the model’s predictions in various tasks. Additionally, we incorporate
structural information from predicted and, where available, X-ray crystallography structures to further
characterize the structural and sequence motifs relevant to the predictions. These learned motifs will
enhance our understanding of antibody development and the roles of different antibody subtypes in the
body.
More specifically, we will leverage the motifs learned from antibodies with specific properties, such

as antigen specificity to SARS-CoV-2, broadly neutralizing antibodies (bnAbs) to HIV [38], or anti-
citrullinated protein antibodies (ACPAs) [39], for efficient repertoire mining, i.e. to identify new potential
antibodies with these properties in existing repertoires. Then, we will demonstrate that the attention
scores from the learned predictive model are highly informative for rational antibody design. Specifically,
we show that mutations in amino acid motifs with high attention scores are significantly more likely
to result in notable changes in binding affinity. To evaluate the advantages of these attention-based
features, we train a model to predict the effects of mutations on antibody binding affinity [40], and
compare its performance to other benchmarks that do not utilize these scores.

2 Proposal

2.1 Available training Data

In this work, we will focus on the binding of antibody to a given target antigen. Either as a binary
classification task (binder vs non-binder), or as a regression task (binding affinity). We leverage different
data types:

(i) General: A recent study [20] combined several existing database to obtain a large collection of
curated antibody-antigen binding affinity values, including both protein sequences and structures.
The curated datasets express sufficient generalizability since they contain numerous antigens such
as SARS-CoV-2, HIV, MERS, and flu as well as many others. The study provide both sequence only
and structure based information (P2PXML-Seq and P2PXML-PDB), which contain 111,845 and
8,475 datapoints, respectively.

(ii) Binders to Sars-Cov2: The spike protein of SARS-CoV-2 and its variants are among the most
extensively studied antigens in terms of antibody binding. Numerous databases and datasets
have been developed since the pandemic to catalog this information, including CovEpiAb [41],
CovAbDab [42], Ab-CoV [43], Alpha-seq [44], and S3AI-Cov [34]. These resources provide valuable
data on the interactions between antibodies and the spike protein, with affinity typically quantified
by metrics such as the dissociation constant (Kd) or the half-maximal inhibitory concentration
(IC50).

(iii) Binders to HIV-1: Antibody binding to the HIV-1 protein, which is known for its high mutation rate,
has also been extensively studied. The CATNAP database contains published IC50/IC80 data for
anti-HIV neutralizing antibodies [45]. This data has been used to evaluate the out-of-distribution
(OOD) performance in antigen binding predictions [46, 34](https://github.com/enai4bio/De
epAAI/tree/main).

(iv) HIV bnAbs: The International AIDS Vaccine Initiative (IAVI) has documented the discovery of over
200 bNAbs for HIV, targeting various conserved regions of the HIV-1 envelope glycoprotein [38,
47]. These bnAbs are recognized for their ability to neutralize a wide range of HIV strains by
targeting specific epitopes that remain relatively constant despite the virus’s high mutation rate.
HIResist [48] is a database of HIV-1 Resistance to broadly neutralizing antibodies (bnAbs).

(v) RA ACPAs: Anti-citrullinated protein antibodies (ACPAs) are a type of autoantibody associated with
Rheumatoid Arthritis (RA). Citrullination is a post-translational modification of proteins, where
the amino acid arginine is converted into citrulline. This process can alter protein structure and
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function, potentially leading to the immune system recognizing these modified proteins as foreign
and generating an autoimmune response. Approximately 100 ACPA clones have now been identified
in the context of RA [39]. These ACPAs are notable for their ability to bind a diverse array of
citrullinated peptides [49]. This binding poly-specificity plays a crucial role in the pathogenesis of
RA, as it drives the autoimmune attack on joint tissues.

(vi) Nanobodies: Nanobodies, also known as single-domain antibodies (sdAbs), are a distinctive class
of antibodies derived from camelids such as camels, llamas, and alpacas [50]. They consist solely
of the variable domain of the heavy chain of heavy-chain antibodies (VHH). They are relevant
because they offer several unique advantages over conventional antibodies, including smaller size,
high stability, and the ability to bind to epitopes that are often inaccessible to larger antibodies.
These properties make nanobodies particularly valuable in therapeutic, diagnostic, and research
applications. Extensive binding data exists for these nanobodies, including AVIDa-SARS-CoV-2 [51]
for SARS-CoV-2 and AVIDa-hIL6 [52] for IL-6 binding. Additionally, there are specialized resources
dedicated to nanobodies, such as the NanoLAS database [53] and the Integrated Database of
Nanobodies for Immunoinformatics (INDI [54]). These resources provide comprehensive data and
tools for nanobody research and applications.

2.2 Models inputs

In this study, we utilize two types of inputs for our binding prediction task (Figure 1). First, we
employ state-of-the-art protein language models, including both general (ESM2-650M [17]) and
antibody-specific models (Ablang [27]). We encode our sequences at the residue level to maintain the
context-specific role of each amino acid. We note that each PLM has a different dimensionality, and
concatenating different PLMs together is also a viable option.
Then, we leverage the structural features of the antibody. Specifically, we consider dihedral and

planar angles as structural features, which have been proposed in previous studies [55, 56, 32]. For two
residues i and j, the relative orientation is defined by six parameters (d , ω, θij, θji, ϕij and ϕji. We also
incorporate the normal mode correlation map [57], which considers the structure as an elastic network
rather than relying solely on rigid geometric potentials. This method captures both structural features
and the energetic patterns of local and global residue fluctuations, an approach that has been shown to
enhance predictive performance compared to traditional contact maps [33].

Figure 1: Protein language models (i.e. evolutionary features) and structural features as
input for antibody binding predictions.

Antibody structures. Approximately 1000 antibody structures have been characterized via X-ray
crystallography [58], including ACPAs, bnAbs to HIV, and Sars-CoV-2 antibodies [42]. As this may
not be enough to train our model, we will infer the structures for other antibodies using Igfold [59],
tFold-Ab [60], or DeepAB [32]. These methods provide a confidence score for the predicted structure,
so we will only retain structures with high-confidence predictions to train our model.

2.3 Models

We consider two models: one utilizing only sequence data with protein language models (i.e., evolu-
tionary features), and another that incorporates both structural and evolutionary features. We will train

Page 4 of 15



On Interpretable Deep Learning and Protein Language Models for Rational Antibody Design

and compare their performance to evaluate the advantage of including structural features, even if they
are inferred from the sequence.

First, we train a model based solely on sequences and PLM embeddings (Figure 2A). The prediction
model uses concatenated heavy and light chain sequences as input. These sequences are encoded at the
residue level using a protein language model. The heavy and light chains are numbered according to
the Chothia alignment, with missing residues (gaps) encoded as zeros in the PLM embeddings. This
process results in an embedding with dimensions (L x N), where L = 292 represents the length of the
antibody sequence and N represents the length of the embeddings (2048 for ESM2-650M and 1048 for
Ablang). Subsequently, the embeddings are transformed into a tensor (L x L x 2N) by concatenating the
embeddings of each pair of residues.

The 2D embedding is then passed through a 2D ResNet. The 2D ResNet starts with a 2D convolution
that reduces the dimensionality to L × L × 64, followed by 25 2D ResNet blocks. Each block consists of
two 2D convolutions with a kernel size of 5 × 5, maintaining the same dimensionality. These blocks
cycle through convolution dilation values of 1, 2, 4, 8, and 16, repeating this cycle five times. Following
the 2D ResNet, the output branch includes a 2D convolution that reduces the dimensionality to L × L
× 37, followed by a recurrent criss-cross attention (RCCA) module [37]. The RCCA module uses two
criss-cross attention operations with shared weights, enabling each residue pair to gather information
across the entire spatial dimension. Attention queries and keys are projected to a dimension of L × L ×
1 (one attention head) for the subsequent task.

Figure 2: Interpretable Deep learning model architecture for antigen binding prediction.
(A) Model using protein language only as input (i.e. evolutionary features). (B) Model
incorporating together both structural and evolutionary features.

We then then consider another model that also take structural information as input (Figure 2B). To
combine both PLM embeddings and structural features in the predictions, we concatenate the L × L × 7
structural feature matrix with the 2D PLM embeddings. However, since the PLM embeddings have a
dimensionality much larger than the structural features, we first reduce the PLM size to L × L × 8
with an encoder before concatenation. This approach ensures a better balance between sequence and
structural features.

Model training. We follow a similar approach for the binary classification task (binder vs non-binder) and
the affinity regression task (Kd or IC50). We trained five models on random 90/10% training/validation
splits and averaged the model logits to make predictions. Models are trained using focal loss and the
Adam optimizer with a learning rate of 0.01, reducing the learning rate upon plateauing of the validation
loss.
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2.4 Application 1: Repertoire mining

In the past few years, paired BCRs from patient repertoires under various immune conditions have
been sequenced. However, not all BCRs in these datasets are antigen-specific, meaning they are not
necessarily relevant to the immune condition, and many different epitopes may be involved. By efficiently
identifying the antibodies relevant to different immune conditions, we aim to improve our understanding
of their formation and population evolution during various stages of disease progression or vaccination.

Publicly available repertoires include SARS-CoV-2 mRNA vaccination repertoires [61], 22 HIV-infected
patients [62], 76 Rheumatoid Arthritis (RA) patients, 10 osteoarthritis patients, and 78 healthy vol-
unteers [63] as well as 13 ACPA-positive RA patients from another study with 6 healthy controls [64].
We will leverage these repertoires to identify new broadly neutralizing antibodies (bnAbs) for HIV and
anti-citrullinated protein antibodies (ACPAs) for Rheumatoid arthritis, which could not be identified
through conventional methods [65, 66, 67]. These sequences will be validated experimentally, leading
to a better understanding of how these antibodies develop and the roles of different antibody subtypes
in the body.

2.5 Application 2: Generating de-novo antibodies with desired properties

Instead of mining repertoires to identify new binders, we can aim to generate an antibody directly
with the desired properties through generative AI [25, 26]. To achieve this, we can utilize the latent
space learned by our model and employ it to design antibody sequences that meet our criteria. This
approach leverages the model’s understanding of antibody structures and functions to predict and
generate sequences that are likely to exhibit the desired characteristics. To generate a sequence directly
from a chosen point in the latent space, we first train a decoder from our learned latent space to
efficiently reconstruct the sequence from the latent space. Then, we identify a region in the latent
space that corresponds to high specificity characteristics. This identification is based on training data
where the model has learned to map specific properties to certain regions in the latent space. Once the
region is identified, we can sample points within this area. Each sampled point represents a potential
antibody sequence in the encoded form. We then use the decoder part of our model to translate these
points back into antibody sequences. The decoder reconstructs the sequence by interpreting the latent
representation, ensuring that the generated sequence retains the high specificity property encoded in
the latent space. This process will allow us to systematically generate and evaluate numerous antibody
candidates with the desired traits, streamlining the discovery and optimization phases.

2.6 Application 3: Mutation impact prediction

Reliably predicting the impact of mutations on binding affinity remains a significant challenge due to
limited data and overfitting issues [68]. We aim to evaluate if the attention scores inferred from our
binding model models can be relevant in mutation impact prediction, and if it can outperform current
benchmarks [40, 69]. If this proves too difficult, we might consider predicting whether a mutation
increases or decreases affinity, a simpler binary task [70].

Database for mutation impact on affinity. The AB-bind [71] and SKEMPI2.0 [72] databases are a col-
lection of mutations over different antibody–antigen structures that include experimentally-determined
changes in binding free energy associated with each mutant. After data cleaning and removal of redun-
dant measurements between the two databases, a total of 905 single mutations over 60 AbAg complexes
are obtained [40]. Then, there are several studies that provide additional measurements not included
in these databases [73, 74, 75, 11].
Additionally, some studies focus on mutating the antigen rather than the antibody. For instance,

extensive research on Covid-19 examines mutations in the Receptor Binding Domain (RBD) of the spike
protein instead of antibodies [76, 77, 78]. Combined together, these studies includes affinity data on
more than 5 thousands RBD mutations.
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3 Follow-up work

3.1 Leveraging the Antigen-Antibody complexes for OOD predictions

Upon successfully identifying binding motifs related to antibody-antigen (Ab-Ag) interactions, we will
evaluate our model’s generalization capability for predicting interactions with other antigens, known as
out-of-distribution (OOD) predictions [34]. To accomplish this, antigen information must be integrated
into our predictive model (Figure 3). While directly concatenating PLM and structure embeddings
from the antigen and antibody is relatively straightforward, it carries the risk of the model treating the
antigen merely as a class label, leading to poor generalization on out-of-distribution (OOD) antigens, as
it was observed in the context of TCR binding predictions [79]. Therefore, a more explicit modeling of
Ab-Ag interactions is preferable. Although previous studies have demonstrated the relevance of Ab-Ag
complexes structures in reliably predicting binding affinity [33], the availability of X-ray crystallography
data for these complexes is limited and dispersed across various antigens [58, 80, 81]. Tools do exist to
infer Ab-Ag complex structures directly from sequences (tFold-AbAg [60], Alphafold-multimer [82, 83]),
but accurately identifying the correct epitope on the antigen remains challenging, and the predicted
Ab-Ag complex structures may not always be of sufficient quality to benefit our model.

Figure 3: General Ab-Ag affinity model predictor. In addition to the information of the antigen
and the antibody, the model considers the Ab-Ag interaction module, encoding how the Ab
and Ag interact. This can be encoded in different ways, as shown in the studies [20, 34, 35]

In this work, inspired by previous studies [20, 34, 35], we will explore various approaches to model
Ab-Ag interactions within our framework. Specifically, we will evaluate whether explicitly modeling
Ab-Ag complexes using existing tools enhances performance compared to directly encoding Ab-Ag
interactions within our model.

3.2 Characterizing TCR binding

T cell receptors (TCRs) share many similarities with antibodies, and the methods discussed in this
proposal can be easily extended to TCRs. T cells typically bind to peptides, which are small pieces
of antigen presented by the MHC complex, involving linear epitopes [84]. This is simpler than the
conformal non-linear epitopes typically encountered in B cell binding. On the other hand, when
considering TCR binding, we must account for the trio of MHC, peptide, and TCR (pMHC-complex).
The TCR must recognize both the MHC molecule and the specific peptide it presents, requiring a precise
fit between all three components. This adds an additional layer of complexity to the binding interaction
compared to the antibody-antigen complex, as the peptide must be correctly presented by the MHC to
be recognized by the TCR.

Tools and datasets for T cells: TCR structures can be inferred with good precision using TCR-
model2 [85], and the direct prediction of TCR-pMHC complexes is also feasible [86]. Several TCR
structure databases are available, including sTCRDab [87] and TCR3D [88]. For TCR specificity data,
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various databases are available, such as VDJdb [89], which contains over 70,000 TCR sequences
and approximately 1,100 different epitopes, and McPas-TCR [90], which offers a manually curated
set of about 40,000 pairs. Additionally, newer datasets are rapidly becoming available, such as the
MIRA dataset published during the COVID-19 pandemic, which includes over 135,000 TCRs binding
to various COVID-19 epitopes [91]. Finally, affinity data linked with structure can be found in the
TCRatlas database [92].

Tasks for TCR binding models: Similar to autoantibodies, we can characterize the sequence and
structural motifs associated with self-reactive TCRs [93, 94, 95] involved in autoimmune diseases.
Self-reactive TCRs can be found in the IEDB [96] database, with many TCRs associated with Type 1
Diabetes (2000 TCRs), Celiac Disease (800 TCRs), and Rheumatoid Arthritis (150 TCRs).
Additionally, we can characterize the binding motif associated with polyreactive TCRs. While most

TCRs exhibit specificity for a particular peptide-MHC complex, some TCRs have the ability to recognize
and bind multiple distinct antigens or peptide-MHC complexes, hence the term polyreactive [97].
These typically recognize multiple viral epitopes [98, 99], or recognize self-antigens and contribute
to the breakdown of self-tolerance [100]. They are characterized by highly flexible and diverse CDR3
regions [101], which allow them to adapt to various peptide-MHC conformations, a specificity that could
be captured by our trained model. Interestingly, TCRs found across multiple individuals and often show
a degree of polyreactivity, recognizing common microbial peptides and sometimes self-antigens [99].
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