Aurelien Pelissier, Ph.D.

02/17/1994

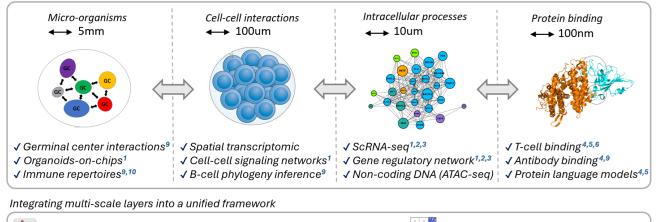
aurelien.pelissier.38@gmail.com

https://www.aurelienpelissier.com
 S Google Scholar
 Github

S Google Scholar S Github in Linkedin M Medium

Current positions:

- Postdoctoral scientist at Yale University in generative AI & foundational models (2023 present)
- Research collaborator at University of British Columbia on organoid bioinformatics (2023 present)


Education:

- PhD at IBM Research Europe & ETH Zurich in AI & Computational Biology (2019-2023) [Thesis]
- MSc from the ENS Paris-Saclay in Quantum Physics (2018)

Notable work:

- Publications in Nature Biotechnology [1], Nature Computational Science [7], Analytical Chemistry [11, 12]
- Conference proceedings at **SDM2019** [13]
- Conference talks at **ISMB2022** [3], **ISMB2021** [7], the leading conference in computational biology (A/A*)
- Participation in AIntibody (generative AI competition) and IMMREP23 [5] (TCR-epitope binding challenge)
- Co-Founder of **Peer2Panel** [14], a blockchain startup bridging NFTs and solar energy

My research bridges artificial intelligence and mathematical modeling frameworks to advance our understanding of immunology, with a particular focus on **foundational models** in the context of B-cell and T-cell dynamics. I combine together interpretability methods, diffusion models, and graph neural networks to achieve efficient and flexible feature representations for **generative AI** tasks in immunology.

⚠ ✓ Large scale simulation of systems with individual node properties^{7,8}

✓ Interpretability of foundational models⁴

Ultimately, the goal is to integrate together biological processes **spanning multiple scales**, such as cell population dynamics, cell-cell interactions, intracellular mechanisms, and protein binding, to construct a realistic *in-silico model* of the immune response.

Selected Publications and Preprints

* Indicates co-first authors

ScRNA-seq, Gene regulatory networks and Cell-cell signaling networks

1 Quintard, C., Wang, J., **Pelissier**, **A.**, Jonsson, G., Jiao, J., Werschler, N., & Penninger, J. (2025). A microfluidic platform for vascularized organoids-on-chip with integrated flow dynamics and immune compartment. *Nature Biotechnology (under review)* \rightarrow Led the bioinformatics analysis, including scRNA-seq, cell-cell signaling network inference, RNA velocity, and gene regulatory network inference. Identified key transcription factors and pathways driving heart organogenesis, offering critical insights into developmental biology.

2 Pelissier, A.*, Laragione, T.*, Harris, C., Martínez, M. R., & Gulko, P. S. (2025). BACH1 as a key driver in rheumatoid arthritis fibroblast-like synoviocytes identified through gene network analysis. *Life Science Alliance*, 8(1). *O* doi:10.26508/lsa.202402808

 \rightarrow Identified computationally BACH1 inhibition as a promising therapeutic strategy for RA, currently undergoing in vivo testing

3 Pelissier, A., Laragione, T., Gulko, P. S., & Martinez, M. R. (2024). Cell-specific gene networks and drivers in rheumatoid arthritis synovial tissues. *Frontier in Immunology*, 2024–12. *S* doi:10.3389/fimmu. 2024.1428773

 \rightarrow Oral presentation at ISMB2022 (Leading conference in computational biology, ranked A/A*).

Protein Language Models

4 Deutschmann, N.*, **Pelissier, A.***, Weber, A., Gao, S., Bogojeska, J., & Martínez, M. R. (2024). Do domainspecific protein language models outperform general models on immunology-related tasks? *ImmunoInformatics*, 100036. *O* doi:10.1016/j.immuno.2024.100036

5 Nielsen, M., Eugster, A., Jensen, M. F., Goel, M., Tiffeau-Mayer, A., **Pelissier**, A., ... Greiff, V. et al. (2024). Lessons learned from the IMMREP23 TCR-epitope prediction challenge. *ImmunoInformatics*, 16, 100045. *O* doi:10.1016/j.immuno.2024.100045

 \rightarrow Demonstrated the potential of protein language models to generalize TCR binding to "unseen" epitopes.

6 Weber, A., **Pelissier, A.**, & Martinez, M. R. (2024). T-cell receptor binding prediction: A machine learning revolution. *ImmunoInformatics*, 100040. *O* doi:10.1016/j.immuno.2024.100040

Multi-scale stochastic models & Non-Markovian processes

7 Pelissier, **A.**, Phan, M., Beerenwinkel, N., & Rodriguez Martinez, M. (2025). Practical and scalable simulations of non-Markovian stochastic processes and temporal networks with individual node properties. *Nature Computational Science (in revision).* **3** doi:10.48550/arXiv.2212.05059 \rightarrow Oral presentation at ISMB2021 (Leading conference in computational biology, ranked A/A*).

8 Pelissier, A., Akrout, Y., Jahn, K., Kuipers, J., Klein, U., Beerenwinkel, N., & Rodriguez Martinez, M. (2020). Computational model reveals a stochastic mechanism behind germinal center clonal bursts. *Cells*, g(6), 1448. **3** doi:10.3390/cells9061448 \rightarrow Third best poster award at ISMB2020.

7 Inita dest poster awara at 15141D2020.

Immune repertoires & B-cell phylogeny

Pelissier, A.*, Stratigopoulou, M.*, Dimitriadis, E., Bende, R., van Noesel, C., Rodriguez Martinez, M., & EJ Guikema, J. (2023). Convergent evolution and B-cell recirculation in germinal centers in a human lymph node. *Life Science Alliance.* & doi:10.26508/lsa.202301959

10 Pelissier, A.*, Luo, S.*, Stratigopoulou, M., EJ Guikema, J., & Rodriguez Martinez, M. (2023). Exploring the impact of clonal definition on B-cell diversity: Implications for the analysis of immune repertoires. *Frontier in immunology.* **6** doi:10.3389/fimmu.2023.1123968

Raman spectroscopy

11 Pelissier, A.*, Hashimoto, K.*, Mochizuki, K.*, Kumamoto, Y., Taylor, J., Fujita, K., ... Komatsuzaki, T. (2025). Beyond the nucleus: Cytoplasmic dominance in follicular thyroid carcinoma detection using single-cell Raman imaging across multiple devices. *Analytical Chemistry (under review)*. *O* doi:10.48550/arXiv. 1904.05675

Taylor, J. N., **Pelissier, A.**, Mochizuki, K., Hashimoto, K., Kumamoto, Y., Harada, Y., ... Komatsuzaki, T. (2023). Correction for extrinsic background in Raman hyperspectral images. *Analytical Chemistry*, *95*(33), 12298–12305. *O* doi:10.1021/acs.analchem.3c01406

Others

13 Pelissier, **A.**, Nakamura, A., & Tabata, K. (2019). Feature selection as monte-carlo search in growing single rooted directed acyclic graph by best leaf identification. In *Proceedings of the 2019 SIAM International Conference on Data Mining* (pp. 450–458). SIAM. *O* doi:10.1137/1.9781611975673.51

14 Lehner, J., & **Pelissier**, **A.** (2022). Peer2Panel: Democratizing renewable energy investment with liquid and verifiable tokenized solar panels. *Whitepaper*. *I* doi: 10.13140/RG.2.2.11113.06247

Work Experience

Academic

2023 – Present	Postdoctoral Research Associate - AI & Computational Biology
	Yale School of Medicine, United States
	Interpretable AI for personalized medicine - Prof. Maria Rodrigez Martinez.
	Utilized protein language models (PLM) to study antibody and T-cell binding to anti-
	gens [4, 6], and demonstrated their effectiveness at the IMMREP23 T-cell prediction
	challenge [5] as well as the AIntibody challenge.
	ightarrow Currently developing interpretable transformer models for rational antibody and TCR
	design, utilizing PLM likelihood dependency maps to capture residue co-dependencies and
	sequence-function relationships.
	1 5 1
	Life Sciences Institute, University of British Columbia, Canada
	Organoid-on-chips for disease modeling - Prof. Josef Penninger.
	Characterizing the benefit of high flux environments for the growth of vascularized
	organoids and the organ-specificity of their vascular networks using scRNA analysis,
	spatial transcriptomics, and cell-cell communication networks [1].
	sputtu transcriptonnes, and cen communication networks [1].
2019 – 2023	Ph.D. Fellowship - AI & Computational Biology
2019 2025	IBM Research Zurich & ETH Zurich, Switzerland
	AI for Scientific Discovery – Prof. Maria Rodriguez Martinez.
	Stochastic Modeling of the Humoral Immune Response: A Multi-scale Challenge.
	ightarrow Nominated for the 2023 ETH Silver Medal awarded to outstanding doctoral theses.
	(Thesis)
2018 – 2019	Research Scientist - AI & Raman Spectroscopy
	Imperial University of Hokkaido, Japan
	Molecule & Life nonlinear science laboratory – Prof. Tamiki Komatsuzaki.
	Accelerated cancer diagnosis measurement technologies by integrating single-cell Ra-
	man imaging with machine learning [11, 12].
Feb. – July 2018	Master Thesis - Reinforcement Learning
5 7	Imperial University of Hokkaido, Japan
	Laboratory for Pattern recognition & Machine Learning - Prof. Atsuyoshi Nakamura.
	Feature Selection as Reinforcement Learning by Bandit strategies and Monte Carlo
	tree search [13].
	(Thesis) (Code) (Poster)

Work Experience (continued)

2016 – 2017	 Visiting International Student - Experimental Physics & Modeling University of British Columbia, Vancouver, Canada Ultrafast Spectroscopy Laboratory – Prof. David Jones. Study of High Harmonic Generation (HHG) in high repetition rate systems. (A one year research program as part of my ENS degree). (Thesis) (Code) (Poster)
Apr. – July 2016	Research Internship - Experimental Physics & Modeling Ecole Polytechnique federale de Lausanne, Switzerland Advanced Semiconductors for Photonics & Electronic (LASPE) - Prof. Nicolas Grandjean. Impact of piezoelectric effects on Nitride-III Nanobeam optical properties. (Thesis) (Code)
Blockchain	
2022 – Present	Co-Founder - Peer2Panel The company aims at making investment in renewable energy secured, transparent and accessible to customers with capital of any size. With the acquisition of tokens backed by physical solar panels, clients can grow a renewable energy portfolio easily and affordably through the Ethereum blockchain [14]. (https://www.peer2panel.com)

Education

2019 – 2023	R	Ph.D. Fellowship - AI & Computational biology <i>ETH Zurich, Switzerland</i> Joint program with IBM Research. Germinal center B cell evolution, Antigen-Antibody binding, Gene regulatory networks, Single cell transcriptomic, non-Markovian processes, Interpretable AI, Drug discovery. \rightarrow Nominated for the 2023 ETH Silver Medal awarded to outstanding doctoral theses. (Thesis)
2017 – 2018		M.Sc. Quantum physics, Nanophysics <i>University Grenoble - Alpes, France</i> Double degree with ENS Paris-Salclay. Quantum information theory, Nanoelectronics, Nanomagnetism, Nanophotonics.
2014 – 2018		Grande École Degree - Fundamental physics & Applications <i>Ecole Normale Superieure (ENS), Paris-Saclay, France</i> PHYTEM (PHYsics, Theory, Experiment, Modeling). Statistical physics, Solid state physics, Astrophysics, Particle physics, Semiconductors.
2012 – 2014		Scientific CPGE <i>Classe Préparatoire aux Grandes Écoles, Grenoble, France</i> Two years preparation to highly selective national competitive exam.

Skills & Interests

Coding	R	Python, R, C++, Matlab, Fortran, TensorFlow, PyTorch, Diffusion model, Generative AI, Graph neural network, Geometric deep learning, Stochastic processes, Bayesian statistics, Interpretable ML, Transformers, LSTM, Reinforcement learning, Quantum machine learning (See my article on Qiskit).
Bioinformatics		Protein language models (PLMs), T-cell and Antibody binding, ScRNA-seq, RNA velocity, Spatial transcriptomic, ScATAC-seq, Non-coding DNA, Gene regulatory networks, Cell-cell communication networks, Immune repertoires, B-cell phylogeny inference, Non-Markovian processes, Mechanistic models.

Awards, Trainings & Certifications

2023	Nominated for the ETH Silver Medal awarded to outstanding doctoral theses. <i>Zurich, Switzerland</i>
2020	Innosuisse Entrepreneurship Program <i>Zurich, Switzerland</i> From Idea to Market, Business model development, Financial planning & Pitching.